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Good practice in retail credit scorecard assessment
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In retail banking, predictive statistical models called ‘scorecards’ are used to assign customers to classes, and hence to
appropriate actions or interventions. Such assignments are made on the basis of whether a customer’s predicted score is
above or below a given threshold. The predictive power of such scorecards gradually deteriorates over time, so that
performance needs to be monitored. Common performance measures used in the retail banking sector include the Gini
coefficient, the Kolmogorov–Smirnov statistic, the mean difference, and the information value. However, all of these
measures use irrelevant information about the magnitude of scores, and fail to use crucial information relating to
numbers misclassified. The result is that such measures can sometimes be seriously misleading, resulting in poor quality
decisions being made, and mistaken actions being taken. The weaknesses of these measures are illustrated. Performance
measures not subject to these risks are defined, and simple numerical illustrations are given.
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Introduction

This paper is concerned with decision making in retail

banking. In particular, it is concerned with choosing actions,

which are appropriate for individual customers. We assume

we have a retrospective database which contains descriptive

characteristics of previous customers and also includes

aspects of their subsequent behaviour. This information is

used to construct a model which will permit us to predict the

probable behaviour of new customers on the basis of their

descriptive characteristics, so that, if necessary, an appro-

priate intervention can be made. Many such models have

been developed for this problem in the retail credit

industry.1–6 We shall refer to these tools as scorecards, in

accordance with the terminology used in the consumer credit

industry.

The model will predict into which behaviour class a

customer is likely to fall, so that we can take an appropriate

action. Different models will be built for each aspect of

behaviour we wish to predict, of course. For simplicity, in

this paper we will assume that, whatever the aspect of

behaviour in which we are interested, there are just two

possible behaviour classes, each with a unique outcome, and

just two corresponding actions which may be taken. The two

class case is overwhelmingly the most important, and has

become something of a paradigm for the industry. For

example, customers are assumed to be either ‘good’ or ‘bad’

and logistic prediction models are commonly used. Familiar

examples of behaviour class pairs in consumer credit are

(default, non-default), (churn, not churn), and (take up offer,

do not take up offer). The corresponding actions might be

(do not offer loan, offer loan), (attempt to induce the

customer to stay, do not incur this expense), and (offer a

certain product, do not make this offer), respectively. This

restriction to just two classes of customer, with two possible

actions, means that we will not be discussing developments

such as profitability scorecards. Using this framework,

which is very widely used in retail banking, this paper is

concerned with criteria for assessing the performance of such

scorecards. These performance assessments will be used to

choose between alternative possible scorecards, and to

monitor scorecard performance over time to decide when

the predictive power has deteriorated to the extent that the

scorecard needs replacing by a new one.

Formally, we can describe the scorecard as providing a

mapping, from the data describing the customers, to the

binary space of the two classes. Unfortunately, this mapping

is not infallible—we cannot always correctly predict the class

into which the customer will eventually fall. This is precisely

why we need scorecard assessment criteria.

The mapping from the information describing the

customer to the binary class space is typically conducted in

two stages. Firstly, the available information is combined to

yield a numeric score such that low scores indicate that a

customer is more likely to belong to one class and high

scores that they are more likely to belong to the other.

Secondly, the score is compared to a threshold, t, with

customers scoring below the threshold being assigned to one

class and those scoring above the threshold being assigned to

the other class. For convenience, we will take the high

scoring class as the ‘good’ customers and the low scoring

class as the ‘bad’ customers, but this is easily adjusted for

scorecards which score in the opposite direction. The term
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‘scorecard’ arises because of the numerical score produced in

the first stage, even though, in situations when an action has

to be taken, this is merely a step on the way towards the final

assignment to one of the two classes. Perhaps we should

remark here that there are one or two exceptions to this two

stage strategy. For example, some implementations of neural

networks and support vector machines simply yield a final

binary classification, without explicitly reporting the inter-

mediate score stage. We should also make explicit the fact

that the score is monotonically increasingly related to an

estimate of the probability that a customer belongs to the

‘good’ class. Sometimes (as we shall see below) it is more

convenient to work with scores which are actual probability

estimates (and, in particular, lie between 0 and 1). Any

numerical score can be converted to such a scale (can be

calibrated) by a straightforward transformation derived

from the data.

Fundamental to the development which follows is the

assumption that each behaviour class has a single outcome,

and that each of these is associated with an appropriate

action which may be taken. This assumption has critical

implications for the nature of the assessment criterion used.

In particular, it means that only the sign of the difference

between the score and the threshold matters: if a score

exceeds the threshold, then it does not matter by how much,

since the decision and, more importantly, the action, will be

the same whether the score exceeds the threshold by a large

amount or a small amount. However, as we shall see, some

criteria in widespread use in the industry are not based solely

on whether or not the score exceeds the threshold, but also

on the extent to which the score differs from the threshold.

The use of this extra, irrelevant, information can sometimes

lead to seriously misleading conclusions about how well the

scorecard is performing, with the result that poor decisions

could be taken.

We need to distinguish, at the start, between two different

kinds of situation which may occur. The first situation arises

with application scorecards. These are used to make an

accept/reject decision, in which ‘accept’ means that the

customer is granted a product (a loan, for example) and

‘reject’ means that they are not. In such situations, the true

class—whether they turn out to be good (ie, do not default

on the loan) or bad (ie, do default) is eventually observed

only for the accepts, and is not observed for those not given

a loan. This, of course, is the familiar problem considered in

reject inference.7–9 The consequence is that the performance

criterion cannot make use of the (unknown) true classes of

the rejected applicants.

The second situation arises when a scorecard is being used

to monitor a portfolio of customers; for example, to predict

which of them may go bad. In this case, there is no notion of

rejection, but a customer identified as having a high

probability of going bad will be allocated to a particular

procedure (eg, perhaps restrictions might be imposed on

their borrowing, or some sort of encouragement to repay

might be communicated). Now customers from classes on

both sides of the threshold can be used in the performance

measure. This second situation can, of course, be generalized

to more than two classes. Thus, we could split the range of

estimated probability of going bad into groups, with different

groups being assigned to different operational procedures. In

principle, such extensions are straightforward generalizations

of the case of a single split, though some ingenuity may be

required to develop criteria for multigroup cases.

In practical implementations, there are issues which we

have not mentioned above. Firstly, since the true classes of

customers are not discovered until some time in the future,

all scorecards are out of date as soon as they are

implemented, in terms of how well they match the current

population of customers or applicants. Secondly, illustrating

with the example of a loan, one cannot be certain that a

customer is good until the end of the loan term—they could

go bad at any time right up until the end. Of course, one can

be sure that they are bad before the term if they do actually

default. Thirdly, having identified that an existing customer

has a high probability of going bad, one will generally adopt

some kind of remedial action, and this may (indeed, one

hopes it will) influence the eventual outcome. This means

that the final proportion going bad will be different from the

predicted proportion going bad, so that one cannot use the

difference between these proportions to assess the accuracy

of the scorecard predictions. This is similar to the problem of

reject inference. We do not dwell on such problems here

simply because they are universal problems, and are not

specific to the tools and methods described here.10–12

The next section describes measures for use when one of

the actions is ‘reject’, so that outcomes cannot be observed

for this action, and the two subsequent sections describe

measures for use when the outcome can be observed under

both actions. The penultimate section briefly discusses some

other important issues, and the final section draws some

conclusions.

When one action is rejection

This case arises in application scoring, where people will be

granted or not granted a product on the basis of their score

on an application scorecard; for example, a loan. As we

noted in the previous section, one fundamental difficulty is

that the true, good or bad, class will (later) be observed for

those offered the product (those whose score is above the

threshold t) but not for those not offered the product (those

whose score is below t).

When only the sign of the difference between the score

and the threshold, but not the magnitude of this difference,

matters, all of the relevant information is contained in the

counts of applicants falling above and below the threshold.

That is, the number of applicants who score above t and who

do not default (ie, who turn out to be good), the number of
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applicants who score above t and who do default (ie, who

turn out to be bad), and the number of applicants who score

below t. The third of these, the number who score below t

provides no information about the ability of the scorecard to

separate goods from bads though it may play a role in

choosing t. Similarly, the absolute number who score above t

has no bearing on the measure of separation between the

two groups: only the relative numbers, or proportions, of

goods and bads above t are relevant. (Of course, if

significance tests are to be conducted, then the absolute

numbers do matter, but that is a separate issue, and one we

do not discuss here.) Since, moreover, the sum of the

proportion of those who score above t who turn out to be

bad, pB, and the proportion of those who score above t who
turn out to be good, pG, is 1, either one of these will be
sufficient. We take pB as our measure. That is, the proportion
of the applicants who score above t who eventually turn out to

be bad is the appropriate measure of effectiveness of an

application scorecard. We call this measure the bad rate

amongst accepts, and denote it by M1.

This result has implications for current practice. In

particular, it means that many of the popular measures in

widespread use may not really be suitable as measures of

performance of application scorecards. These include the

Gini coefficient, the Kolmogorov–Smirnov (KS) statistic, the

mean difference (t-statistic), and the information value (or

divergence),13,14 all of which use irrelevant information and

fail to use information on the bad rate among accepts. We

define these measures below, and illustrate, for the Gini

coefficient, how it fails to measure the aspects of perfor-

mance in which we are really interested. Similar short-

comings apply to the other measures.

Let s(x) be the score for a person with descriptive

characteristic vector x. For applicants with scores above t

only, let B be the cumulative distribution function of these

scores for the bad class, let G be the cumulative distribution

function of these scores for the good class, and let b and g be

the corresponding probability density or mass functions.

Using this notation:

� the Gini coefficient is defined as

2�
Z
BðsÞgðsÞds� 1 ð1Þ

� the KS statistic is defined as

max
s
BðsÞ � GðsÞj j ð2Þ

� the mean difference statistic is defined as

R
sgðsÞds�

R
sbðsÞds

ðpGf
R
s2gðsÞds� ð

R
sgðsÞdsÞ2g þ pBf

R
s2bðsÞds� ð

R
sbðsÞdsÞ2gÞ1=2

ð3Þ

� the information value is defined asZ
ðgðsÞ � bðsÞÞ logðgðsÞ=bðsÞÞds ð4Þ

The key thing to note about all of these definitions is that

they are based on the distributions of score values of the

good and bad customers. That is, these measures use

information about the difference between the threshold t

and the score, not merely the proportions of applicants who

score above t who are good and bad. Only in the definition

of the mean difference do the proportions pG and pB appear,
and even here not in a way central to the definition but only

as a weighting in calculating an average standard deviation

of the two classes. In summary, all four of the measures

defined above use information which is irrelevant to the

performance of the scorecard and fail to use information

which is critically relevant. This is not of mere theoretical

interest. It means that incorrect conclusions can be drawn

about scorecard performance.

It is easy to contrive examples showing how the Gini

coefficient and other measures can be misleading. Consider

for example, the following situation. Suppose that 10% of

the applicants are bad, that the overall score distribution of

the goods is normal with mean 0.5 and standard deviation

1.0, sBN(0.5, 1.0), that the bads have an overall score

distribution sBN(�0.5, 1.0), and that the threshold t is 0.
This yields an overall accept rate of 65.32%. If these values

are thought to be unrealistic for real scorecards, then they

can be adjusted by simple rescaling. The bad rate amongst

accepts based on these values is 0.0472 and the Gini

coefficient (based solely on the distributions of those scoring

above t, of course) is 0.3224. Now suppose that another

scorecard applied to this population, or the same scorecard

applied to a new population in the future, yields scores

which have the same good distribution (and that the

population still contains 10% bads and the threshold is still

t¼ 0), but that the overall distribution of scores for the bads
is now sBN(�0.2, 0.5). That is, the mean bad score has
increased and the standard deviation of the bad scores has

decreased. Using these new values, the bad rate among

accepts is 0.0525 and the Gini coefficient (again, of course,

based solely on those scoring above t) is 0.6338. That is, the

Gini coefficient (for which higher scores represent improved

performance) shows an apparent improvement, having

almost doubled, even though the bad rate has deteriorated

(in fact it has increased by over 10% on its previous value).

The threshold t may be chosen in various ways. In the

example above, we used a fixed value (t¼ 0)—on the

grounds that, when the instrument was constructed, a given

score corresponded to a given risk of being bad. On the

other hand, one might choose t so that a fixed proportion of

the applicant population had scores above it (eg so that 80%

of the population of applicants are accepted). Note that one

will generally not want simply to choose the threshold which

leads to minimum bad rate among accepts, since this is
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achieved by accepting very few applicants–only those who

score very highly indeed—and it is likely that one would

want to accept more than the very few applicants accepted

by this procedure. Now compare the initial situation above

(which led to a Gini coefficient of 0.3224 and a bad rate

amongst accepts of 0.0472) with a new situation which has

arisen with a new population. For this new population,

suppose that the score distribution of the goods is again

sBN(0.5, 1.0), and that the score distribution of the bads is
sBN(�0.25, 0.5). Only now assume that the overall

proportion of bads in the new population is no longer

10% but is now 21.1%. With a threshold of t¼�0.1 the
accept rate is maintained at 65.32%. However, the Gini

coefficient becomes 0.6448, again showing a dramatic

increase on the original figure 0.3224 and again suggesting

a substantial improvement, while the bad rate among

accepts has increased to 0.1234. This is a three-fold increase

on the previous bad rate, showing that in fact things have

become substantially worse, so that the improved Gini

coefficient is very misleading.

When neither action is rejection; for given threshold

The previous section considered the case when applicants

with scores below the threshold t were not granted the

product, so that they were never followed up and their true

class was never discovered. For this reason, such customers

could not appear in the scorecard’s performance measure. In

this section, we examine the case when the scorecard is used

to assign customers to two different action classes, neither of

them being rejection. In fact, for simplicity, we shall assume

that those with scores above t will be regarded as ‘reliable’

customers, requiring no special action to be taken, while

those with scores below t will be regarded as behaving in a

risky manner, and requiring some kind of intervention. The

details will depend on the aims, and the scorecard will be

constructed to reflect those aims. In all these cases, in this

section, we assume that the true class of all customers is

eventually discovered, regardless of whether their score was

above or below t. Again for convenience, we will refer to the

classes as ‘good’ and ‘bad’, and take a high score as

indicating that a customer is more likely to belong to the

good class.

Once again, regardless of the extent to which their score

exceeds t, the same (ie no) action will be taken for all

customers whose score lies above t. Likewise, some other

‘same action’ will be taken for all customers whose score lies

below t, regardless of the size of the difference. Thus only the

counts of good customers above t, of good customers below

t, of bad customers above t, and of bad customers below t

provide information relevant to scorecard performance.

Note that the counts of good and bad customers with scores

falling below the threshold, and the counts of good and bad

customers with scores falling above the threshold, are the

counts of those customers who would turn out to be good or

bad if we carried out the action appropriate for those above

the threshold. Thus the performance measure is a measure of

how effective the scorecard is in separating out those for

whom we should take the action appropriate for scores

above t from those for whom we should do something

different. A straightforward extension of these ideas collects

data on the outcomes of both actions for the entire range of

scores, and combines the effectiveness of the score at

separating goods from bads under both actions. However,

for simplicity we will not discuss this here. In practice, of

course, one would normally not have samples of customers

with scores below the threshold who have received the action

for those above the threshold, so that specific data collection

strategies must be developed (eg give a random sample of

customers one action, and another random sample the other

action). The case in which one action is reject does not fit

into this situation simply because the notion of a good or

bad outcome when the customer is rejected has no meaning.

The definitions of the Gini coefficient, the KS statistic, the

mean difference statistic, and the information value given in

the previous section also apply here, except that now the

distribution g(s) is over the entire range of scores, and is the

distribution of scores for customers who would turn out to

be good if the action appropriate to scores above t were to be

taken. Likewise for the bad distribution b(s). Similarly, the

proportion pG¼ 1�pB is the overall proportion good in the
population under the action appropriate for those scoring

above t. Thus, in this case as well, these measures all use

(irrelevant) information about the difference between the

scores and the threshold, while failing to use (critically)

relevant information about the counts of customers lying on

each side of the threshold.

Suppose that a marginal cost cB is incurred for any

customer scoring above t who is in fact bad, and that a

marginal cost cG is incurred for a customer scoring below t

who turns out to be good. These costs arise from the fact

that, for such people, an inappropriate action is recom-

mended. The word marginal here refers to the fact that we

are talking about the extra cost due to the fact that an

incorrect prediction has been made, not the cost due to the

effort of making a classification, which we assume to be the

same in all cases.

The costs may be difficult to determine, but in fact there is

a close relationship between them and the optimal choice of

threshold t. To see this, recall that a score is really a

monotonically increasing transformation of an estimate of

the probability that a customer will belong to the good class:

higher scores correspond to higher probabilities. We could

recalibrate the score so that it directly yielded an estimate of

this probability. Suitable (monotonic increasing) transfor-

mations can be estimated from the test data, as we describe

below. Suppose that P is such a transformation, so that P(s)

is the estimated probability that a customer with score s will

belong to the good class. Now, if nB(t) ‘bad’ customers have
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estimated probability of being good larger than P(t) and

mG(t) ‘good’ customers have estimated probability below

P(t), the overall misclassification cost is nB(t)cBþmG(t)cG.
It is then easy to show15,16 that the optimal threshold, t, in

the sense that it minimizes the overall cost, is given by

t¼P�1(cB/(cGþ cB)). This analysis can be worked in

reverse. If a threshold t is adopted, then the implicit ratio

between the costs of the two types of misclassification

is cG/cB¼ (1�P(t))/P(t). The choice of threshold equal to t
means that the scorecard users regard the misclassification

of a good customer as (1�P(t))/P(t) times as serious as
the misclassification of a bad customer.

It follows from this that scorecards can be compared using

the overall cost consequent on recommending inappropriate

actions for those ‘good’ customers with scores below

threshold t and those ‘bad’ customers with scores above t.

The predictive performance of the scorecard is indicated by

the overall cost due to misclassifications:

nBðtÞcB þ mGðtÞcG ¼ cB nBðtÞ þ mGðtÞ
1� PðtÞ
PðtÞ

� �
ð5Þ

Since cB, the cost of taking inappropriate action on a bad

customer, is a constant for a fixed t, and since the total

number, n, of customers to which the scorecard is applied

should not influence the measures, we use, as our

performance measure

M2 ¼ nBðtÞ þ mGðtÞ
1� PðtÞ
PðtÞ

� ��
n ð6Þ

Again we note the empirical data which goes into

this measure. It is simply the counts of those customers

who are assigned to inappropriate classes, so that

inappropriate action is recommended for them. There

is no use of irrelevant information about sizes of scores

beyond the information relating to the action the scores

imply. The larger is the value of M2, the worse is the

scorecard.

In order to use this measure, the value P(t) needs to be

determined. This can be carried out in various ways. Perhaps

the most straightforward is to fit a simple logistic regression

model with the response being the true class (with good

labelled 1 and bad labelled 0) under action appropriate for

those who score above t, and the predictor variable being the

score on the scorecard. The value predicted from this logistic

model at t gives an estimate of P(t). If a logistic model is

felt to be too restrictive, a straightforward alternative

is to use local smoothing. For example, the local logistic

model described in Tibshirani and Hastie.17 More generally,

logistic models (or, indeed, any model which yields a

monotonic increasing relationship between score and

estimated probability of being good) can also be used for

recalibrating scorecards18 so that, for example, after

recalibration, a given score corresponds to a specified log

odds of being good.

To illustrate the use of the measure given in (6), and to

show how other measures can again lead to mistaken

conclusions, consider the following situation. We illustrate

using the KS statistic. Suppose that 10% of the applicants

are bad, that the score distribution of the goods is normal

with mean 1.0 and standard deviation 1.0, N(1.0, 1.0), that

the bads have a score distribution N(�0.5, 1.0), and that
the threshold t is 0. Then the KS statistic is 0.5467 and

M2¼ 0.1533. Now suppose that this scorecard is applied at a
later date to a population for which the distribution of scores

of the goods becomes N(2, 1.0), the distribution of scores

of the bads becomes N(0, 1.0), and the proportion of bads in

the population is still 10% (and the threshold remains at 0).

(Or imagine that an alternative scorecard applied to the

original population yields distributions with these character-

istics.) With these new parameters, the KS statistic is 0.6827

and M2¼ 0.7722. We see that whereas the KS statistic (for
which a large value is good) shows an apparent large

improvement in performance of the scorecard from the first

to the second situation, the M2 measure (for which a large

value is bad) shows that there has been a dramatic

deterioration in performance.

When neither action is rejection: unknown threshold

In the previous section, we described how to measure the

overall costs associated with using a scorecard. However,

this derivation was based on the assumption that the

threshold t, which was used in assigning customers to

classes, was known or given. Of course, in order to use the

scorecard in practice one must choose a threshold—or,

equivalently, choose a cost ratio cG/cB. However, at the time

of building the scorecard and choosing between score-

cards, one may not know exactly what a suitable threshold

or cost ratio will be. The problem is that the precise

future circumstances in which the scorecard will be applied

are often unknown at the time the scorecard is selected.

This would make formal performance criteria based

on an assumption of a known threshold impossible to

calculate at the time of constructing or selecting the

scorecard.

The Gini coefficient can be regarded as being a way

to tackle this. With threshold t, the overall cost is

C(t)¼ {pGG(t)cGþ pB[1�B(t)]cB}. If the scorecard classifica-
tion threshold t is assumed to be unknown, we can obtain an

overall measure by integrating C(t) over all possible values

of t. Of course, some values of t might be regarded as more

likely than others. Let the probability that a value for t will

occur be given by a function w(t). For illustration, and

because it will be seen to be an important special case,

suppose we assume that w(t)¼ pGg(t)þpBb(t), the mixture
distribution of the scores. With this weight function, the
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overall cost is

C ¼
Z

pGGðtÞcG þ pB 1� BðtÞ½ �cBf gwðtÞdt ð7Þ

¼
Z

pGGðtÞcG þ pB 1� BðtÞ½ �cBf g pGgðtÞ þ pBbðtÞ½ �dt

ð8Þ

Without loss of generality, we can take cGþ cB¼ 1. Then,
using the relationship cG/cB¼ (1�P(t))/P(t) and the fact

that P(t) is the probability that a customer with a score t

will be good, we obtain

cG ¼ pBbðtÞ= pGgðtÞ þ pBbðtÞ½ � ð9Þ

and

cB ¼ pGgðtÞ= pGgðtÞ þ pBbðtÞ½ � ð10Þ

Substituting (9) and (10) into (8) yields

C ¼
Z

pGGðtÞpBbðtÞ þ pB 1� BðtÞ½ �pGgðtÞf gdt ð11Þ

from which

C ¼ pGpB

Z
GðtÞbðtÞ þ 1� BðtÞ½ �gðtÞf gdt

¼ 2pGpB 1�
Z
BðtÞgðtÞdt

� �

which, from (1), we see gives

C ¼ pGpBð1� GiniÞ ð12Þ

and

Gini ¼ 1� C=pGpB ð13Þ

Thus, if we do not know what threshold to choose, and if

we combine the costs over all possible thresholds, where the

choice of threshold is weighted according to the overall

score mixture distribution, we obtain a result which is

equivalent to (a simple linear transformation of) the Gini

coefficient.

The choice of the mixture distribution as the weighting

function w(t) in the derivation of (12) and (13) may appear

rather artificial. Indeed, it is. The costs cB and cG will in fact

be obtained quite distinctly from the score distribution, and

need have no relationship to it whatsoever. They should be

determined by the consequences of the actions, and the

context in which those actions occur (the type of financial

product, etc). Furthermore, the integral in the above

derivation ranges over all possible values of the score. This

is equivalent to ranging over all possible values of the cost

ratio cG/cB, from 0 toN. It means, for example, that one is

prepared to include in the measure the possibility that the

cost of misclassifying a good customer is 10 times as serious

as misclassifying a bad customer, and the possibility that the

cost of misclassifying a good customer is only one tenth as

serious as misclassifying a bad customer. This will seldom be

appropriate. Usually, one will believe that one type of cost

will be larger than the other. For example, treating a bad

customer as good often leads to financial loss whereas

treating a good customer as bad often only means a lost

opportunity. If it is known that one type of cost is larger

than the other, then the cost ratio should range either over

the interval [0, 1] or over the interval [1,N]. More generally,

one might be prepared to give likely ranges for the cost ratio

or threshold. We return to this below.

In summary, the advantage of the Gini coefficient is that it

requires no thought about the possible range of the

threshold or, equivalently, of what the cost ratio cG/cB
might be. However, the converse of this advantage is the

major disadvantage that it removes the need to think about

the range of the cost ratio by integrating over all possible

values—even though we know that some of these values are

entirely unrealistic for any given product—and gives relative

weights to the possible values, via w(t), which may bear no

relationship whatsoever to the likely values for the threshold.

The relationship cG/cB¼ (1�P(t))/P(t), with cGþ cB¼ 1,
gives cB¼P(t). Using this in (7) gives

C ¼
Z

fpGGðtÞ½1� PðtÞ� þ pB½1� BðtÞ�PðtÞgwðtÞdt ð14Þ

Now, defining cG as
R1
�1GðtÞ½1� PðtÞ�wðtÞdt, we have

CG ¼
Z1
�1

GðtÞ½1� PðtÞ�wðtÞdt

¼
Z1
�1

Zt
�1

gðuÞdu½1� PðtÞ�wðtÞdt

¼
Z1
�1

Zt
�1

gðuÞ½1� PðtÞ�wðtÞdudt

¼
Z1
�1

Z1
u

gðuÞ½1� PðtÞ�wðtÞdtdu

¼
Z1
�1

gðuÞ
Z1
u

½1� PðtÞ�wðtÞdtdu

¼EG
Z1
u

½1� PðtÞ�wðtÞdt

0
@

1
A

where the notation EG signifies that the expectation is taken

with respect to the distribution G.
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We can estimate this expectation using

ĈCG ¼ 1

nG

XnG
i¼1

Z1
ti

½1� PðtÞ�wðtÞdt ð15Þ

where the ti, i¼ 1,y, nG are the scores of the sample points

from the good class. This can be further expressed as

ĈCG ¼ 1

nG

XnG
i¼1
i

Ztiþ 1
ti

½1� PðtÞ�wðtÞdt ð16Þ

where tnG þ 1 ¼ 1. This choice of tnG þ 1 might suggest that
the last integral in this summation will be infinite. However,

this will only be the case if one is prepared to contemplate

values which are larger than the observed scores of all the

good customers (so that they are all classified as bad). It

seems unlikely that one would ever be prepared to

contemplate such a value for t. This restriction on possible

values for t will be made explicit in the choice of w(t), which

will be zero for such large values of t.

A similar calculation for the second term in (14) yields

CB ¼
Z1
�1

½1� BðtÞ�PðtÞwðtÞ ¼ EB
Zu
�1

PðtÞwðtÞdt

0
@

1
A

which may be estimated by

ĈCB ¼ 1

nB

XnB
j¼1

ðnB � j þ 1Þ
Ztj
tj�1

PðtÞwðtÞdt ð17Þ

where the tj, j¼ 1,y, nB are the sample points from the bad

class and t0¼�N. An argument similar to that for the good

class means that w(t) will be zero for values of t smaller than

the smallest observed score for bad customers.

Adding (16) and (17), appropriately weighted by the

priors pG and pB respectively, gives an estimate of the total
cost (14).

Since P(t) and w(t) will generally be fairly smooth

functions, and will not change much between two customers

with neighbouring scores, we can approximate (14) by

~CC ¼ pG
nG

XnG
i¼1
iðtiþ 1 � tiÞ 1� Pðtiþ 1Þ þ PðtiÞ

2

� �

� wðtiþ 1Þ þ wðtiÞ
2

� �
þ pB
nB

XnB
j¼1

ðnB � j þ 1Þðtj � tj�1Þ

� 1� PðtjÞ þ Pðtj�1Þ
2

� �
wðtjÞ þ wðtj�1Þ

2

� �
ð18Þ

If the data have been obtained by a random sample from the

population, so that reasonable estimates of pG and pB are,

respectively, nG/(nGþ nB) and nB/(nGþ nB), (18) becomes

~CC ¼ 1

nG þ nB

(XnG
i¼1
iðtiþ 1 � tiÞ 1� Pðtiþ 1Þ þ PðtiÞ

2

� �
:

� wðtiþ 1Þ þ wðtiÞ
2

� �
þ

XnB
j¼1

ðnB � j þ 1Þðtj � tj�1Þ

� 1� PðtjÞ þ Pðtj�1Þ
2

� �
wðtjÞ þ wðtj�1Þ

2

� �)

ð19Þ

The derivation of (18) is perfectly general, and applies

for any choice of w(t) (subject to the constraints that it

takes zero values for very extreme scores, so that the

integrals and sums above are not infinite). Formal methods

of knowledge elicitation could be used to try to extract

beliefs about likely values of t, that is, about the function

w(t). However, it seems unlikely that the effort involved, and

the accuracy which will result, will justify the effort. Instead,

therefore, we propose a simple approximate method,

following that described in Adams and Hand.19 This is

based on obtaining just three possible values for t: the value

thought to be most likely (tM), the value which is regarded

as the lower limit of possible values (tL), and the value

which is regarded as the upper limit of possible values (tU).

Using these values, a simple triangular form is defined

for w(t):

wðtÞ ¼

0 totL

ðt� tLÞ
2ðtM � tLÞðtU � tLÞ

tLototM

ðtU � tÞ
2ðtU � tMÞðtU � tLÞ

tMototU

0 t4tU

8>>>>>>>>><
>>>>>>>>>:

ð20Þ

This places most weight in the region of tM and decays

linearly to zero weight at tL and tU. It is scaled to integrate

to 1.

Some other important issues

In the introduction, we mentioned some general practical

issues, which affected all scorecard construction methods,

and which needed to be taken into account when assessing

scorecards. There are also other high-level issues which

should be kept in mind, both when building and when

evaluating scorecards. Without going into too much detail,

we will describe some of the most important here.

There is an important distinction between evaluating

scorecard construction methods and evaluating scorecards.

Thus, for example, several authors20,21 have undertaken

comparative studies of the effectiveness of neural networks,

support vector machines, and other recent developments
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compared with logistic regression, linear discriminant

analysis, and tree methods. Their aim, in these studies, is

to draw some general conclusion about which class of

methods is most effective (for retail banking applications).

This will help those tasked with constructing new scorecards

to choose between methods. In contrast to this, there is the

situation of being presented with a data set and invited to

construct various scorecards and choose the best for

practical application. The aim here is to draw a conclusion

about which scorecard is best with this data set. The

problems have been termed the unconditional and conditional

problems, respectively. The conditional one makes a

statement specific to (conditional on) the available data,

while the unconditional one is more general. It is entirely

possible that opposite conclusions can be drawn from

the two questions: for example, perhaps in general

neural networks provide good solutions, but it may

be that, in the particular case of the data presented to us,

the network solution is poor. It is therefore very important

to be clear about which of the questions one is trying to

answer.

When one assesses performance over time to detect

deterioration, new data are constantly arriving. The

scorecard is being applied to the data set on which it is to

be evaluated (subject to difficulties of the kind mentioned at

the end of the introduction). However, when one is initially

constructing a scorecard or choosing which of several

possible scorecards to adopt, one only has available the

construction data. It is well known14,16,22 that evaluating a

scorecard on the data used to construct it (ie, deciding which

characteristics to include, choosing how to split the

characteristics into categories, estimating parameters and

weights, and so on) leads to optimistic evaluations, in the

sense that future performance is likely to be worse than that

estimated and some highly sophisticated strategies have been

developed for overcoming it.14,16,22

This paper is concerned with evaluating scorecards. Such

evaluation might be for absolute or comparative purposes.

For example, in application scoring we might want to be

sure that the bad rate among accepts is kept below 5%—an

absolute value of performance. Or we might want to know

which of two scorecards is more effective—a comparative

evaluation. Again it is important to bear the distinction in

mind.

Finally, scorecards are often constructed using statistical

model-fitting approaches, optimising the criteria typically

adopted in such modelling, such as likelihood. Other criteria

include least squares with neural networks, various impurity

indices with tree classifiers, and distance from the decision

surface with support vector machines. Since different criteria

can lead to different results, it would seem sensible to choose

the scorecard by optimizing a criterion appropriate to the

use to which the scorecard is to be put—such as those

described in this paper.

Conclusion

If a scorecard is being used to assign customers to actions by

comparing their score with a threshold, and if the same

action will be taken and penalty will be incurred no matter

how large is the difference between the score and the

threshold, then scorecard performance criteria should

depend only on the numbers of customers assigned to the

actions, and not on how close the scores are to the decision

threshold. If outcomes will result from both possible actions,

then measureM2, defined in Equation (6), is appropriate. A

complication arises in cases when one of the actions is to

reject an applicant, since then by definition the outcome does

not exist, so that it is never known what would have been the

appropriate action to choose. In this case, performance

criteria must be based solely on the accepted applicants, and

M1, the bad rate among accepts is appropriate.

It is important to note that we are not making a blanket

statement to the effect that the measures in common use,

such as the Gini coefficient, the KS statistic, the mean

difference, and the information value, are never appropriate.

Rather, we are making (a) the broad statement that the

choice of measure must reflect the aims of the scorecard

procedure, and (b) the narrower statement that, in the case

when the choice of action depends solely on whether a

person scores above or below some threshold, these

common measures use irrelevant information, which

means that they may draw misleading, and even incorrect

conclusions.

A final cautionary note is in order. We have ignored the

subtleties raised at the end of the introduction. These are

important in practical implementations, but affect all

scorecard applications and assessments, not merely the

criteria we have described in this paper.
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